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Abstract--The photon-noise-limited performance of a radiation detector exposed to a thermal 
background of temperature T is treated by calculating the resulting specific detectivity, or D*. 
Both ideal photon detectors of arbitrary quantum efficiency 11 and ideal thermal detectors of 
arbitrary emissivity 9 are considered. The effects of both shot noise and of excess, or 
photon-bunching noise are included in the formalism. The relative contributions of these two 
sources depend on the quantum efficiency or emissivity of the detection system. For frequencies v 
such that hv/kT 6 q, excess noise can make an appreciable contribution to the total system 
noise. For the case of detection of narrow band radiation, D* is independent of q in the 
limit hv/kT e 1. 

INTRODUCTION 

The sensitivity of a radiation detector is limited most fundamentally by the randomness 
of photon arrival times at the detector, and a detector whose sensitivity is limited 
predominantly by this effect is said to be photon-noise-limited. In determining the photon- 
noise-limited performance of a detector exposed to radiation of thermal origin, it is 
necessary to take proper account of the Bose-Einstein nature of the radiation field. The 
photon occupancy (that is, the mean number of photons per field mode) of thermal radiation 
characterized by the excitation temperature T is known”) to be of the form 

(1) 

where v is the frequency of field mode. Bose-Einstein statistics require that the mean- 
square fluctuation in the photon occupancy be given by(‘) 

(AH,)’ = &(l + A,). (2) 

In the limit hv/kT s 1, equation (1) shows that ii, + 1, and therefore equation (2) 
becomes (AiiJ2 ‘u ff,. In the detection of such radiation, the individual photon-events 
are uncorrelated, and the noise in the detected signal can be considered to be a form 
of shot noise. However, in the limit hv/kT a 1, equation (1) shows that ii, D 1, and 
equation (2) thus becomes (AriJ2 z fi,‘. The increased fluctuations in this limit are a 
consequence of photon bunching. The photons comprising the field are correlated in 
this case in such a way as to increase the noise in the detected signal above that 
given by shot noise. This increased noise has been called excess noise. 

For the limiting case of detection by a system having unit quantum efficiency,‘2’ it is 
possible to establish a direct correspondence between the noise in the detected signal 
and the fluctuations in photon occupancy given by equation (2). In the more general 
case of a non-unit-quantum-efficiency detector, such a direct correspondence does not 
exist, because the randomness imposed by the detection process introduces additional 
noise, known as partition noise,t3) and also because the effect of photon bunching is 
decreased by the detection process.‘4) 

The purpose of the paper is to discuss the consequences of photon bunching on the 
photon-noise-limited performance of a detection system of arbitrary quantum efficiency. 
The performance is specified by calculating the specific detectivity, defined by 
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where A is the effective area of the detector, Af is the electrical bandwidth of the 
detection system, and PN is the noise equivalent power (NEP), defined as the incident 
signal power required to produce a signal-to-noise ratio of unity. The detector is assumed 
to be ideal in the sense that its output signal depends linearly on the incident power 
and in that only noise associated with the incident radiation contributes to the 
system noise. The analysis presented here should apply approximately to photovoltaic 
detectors or to cooled bolometers. The consequences of photon bunching to a photo- 
conductive detector are somewhat different, and have been discussed by van Vliet.‘3’ 
Several authors have previously addressed the problem discussed in this paper, but 
have obtained results differing somewhat from those presented here because they have 
either neglected to account for the dependence of the photon bunching contribution 
on quantum efficiency’5*6’ or have concluded that photon-bunching effects are absent for 
the case of incoherent radiation. (‘) The origin of these differences is discussed below 
in relation to equation (6) of this paper. 

In the remainder of this paper, general expressions for the photon-noise-limited D* 
of both photon and thermal detectors are derived, and these results are specialized to 
the two cases of a detector characterized by a constant quantum efficiency for all 
frequencies greater than some cut-on frequency and to the case of a detector that receives 
radiation only from a narrow spectral band. It is shown that in certain cases, which might 
well be encountered in the far infrared, photon bunching leads to a significant excess 
noise contribution to the detected signal. It is shown that the shot-noise and excess-noise 
contributions depend differently on the quantum efficiency of the detector. A surprising 
consequence of this effect is that, for ~v/~~ < q, the background-limited D* of a narrow 
band detention system is independent of the system quantum eficiency. 

PHOTON-NOISE-LIMITED PERFORMANCE OF 
PHOTON DETECTORS 

Let us denote by (P,, the average rate at which photons contained in a narrow 
spectral interval dv of the radiation background are incident on the detector. If the 
background is blackbody radiation of temperature T contained in a cone of half angle 0, 
this rate is given by”’ 

cp = 27~’ sin2f?A dv 
,’ e2(eh@z _ 1) ’ (4) 

The average rate at which photo-events occur is thus given by 

N” = I?(v)@, (5) 

where q(v) denotes the quantum efficiency for radiation of frequency v. It has been 
shown(3*4*8-10) that the mean-square fluctuation in this rate is given by 

(AN,)’ = 2N,Af(l + rj(v)ii,). (6) 

The unity in the term in parentheses gives rise to the shot noise contribution whereas the 
second term gives rise to the excess-noise contribution. The relative contributions of these 
two terms depends on the quantum efficiency of the detection system, since a small quantum 
efficiency has the effect of lowering the degree of photon bunching. 

Equation (6) is generally, but not univers~ly, taken to be the correct expression for the 
fluctuation in the rate at which photoevents occur. It is identical, for instance, to 
equation (7.3) of Kingston’4’ and to equation (68) of van Vliet.‘3’ The necessity of 
including the factor of QZ in equation (6) has been pointed out by Hanbury Brown 
and Twiss. (*) Hodara(g’ and Ross”~’ treat only the case of a detector with unity quantum 
efficiency, and equation (6) agrees with their results in this limit. Our equation (6) is 
somewhat in disagreement, however, with the analysis of reference 7 which replaces our 
factor (1 + Q%) with (1 + yri), where y is a parameter describing the degree of coherence 
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Fig. 1. Photon-noise-limited D* of a photon detector and of a thermal detector. The detectors 
are exposed to thermal background radiation of temperature T, and are assumed to be 
characterized by constant quantum efficiencies (or emissivities) u for all wavelengths less than 
the cutoff wavelength I of the detector. The upper abscissa and right-hand ordinate assume 
the value To = 300K. The difference between the curves labeled q = 1 and q E: 0 reflect the 

influence of photon bunching. 

of the incident radiation. For the case of broad band radiation, the total fluctuation 
(AN)2 is given by integrating equation (6) over all frequencies. 

If in addition to the background radiation, a signal of frequency v, and power P, falls 
onto the detector, additional photoevents occur at the rate I P,/hv,. The NEP 
is determined by finding the value of P, for which this rate is equal to the total 
fluctuation rate AN, and the value of D* is then found using equation (3) as 

D* = 
[ 

4n sin20 h2v2 4: 
i 

w ~(v)vZ(ehv”T - 1 + q(v))dv -112 

t12(v,)c2 0 (ervlkT - 1)2 1 * 
This general expression for the background-limited I)* of a photon detector can be 

simplified under special circumstances. Consider first the case in which ri(v) is equal to 
a constant value 1 for all frequencies greater than that of some cut-on frequency, which 
is assumed equal to the frequency v, of the signal. Equation (7) then reduces to 

This expression has been evaluated numerically using Simpson’s rule for q = 1 and 
q 5 0, and the results are shown in Fig. 1. The lower abscissa is labelled in terms 
of the dimensionless parameter kT/hv, = kTIZ/hc = l/x, while the upper abscissa has been 
labeled in terms of the wavelength in pm, assuming a blackbody temperature of 
To = 300K. This scale can be used at other temperatures T by dividing the values by 
T/To. The left-hand ordinate gives D* in the indicated dimensionless units, while the 
right-hand ordinate gives D* in conventional units for the case To = 3OOK, Q = 1, and 
sin e = 1. To use this scale under other ~rcumstan~s, the values should be divided by 
sin~T/T~)5’2 v-ii’. The dominant effect of varying q is to lower D* by a factor 
INF. 22/3-c 
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of q-112. For this reason, 0*/,/q has been plotted in Fig. 1. In addition, the overall shape 
of the curve depends on q. For hv + kT, the curve for r~ = 0 is 17% higher than that 
for 1 = 1. This difference can be understood as a consequence of photon bunching, 
which is absent in the limit r~ -0 since there is then no possibility that the photo- 
events can be correlated. 

Another special case, and one for which the effects of photon bunching are much more 
pronounced, is that in which the detector is shielded from background radiation by a 
narrow bandpass filter, whose central frequency v is related to its bandwidth Av by 
Av = v/Q. For Q B 1, equation (7) reduces to 

where q = q(v). This equation can be written in terms of the dimensionless parameter 
x = hv/kT as 

This functional form has been plotted vs l/x in Fig. 2 for the case rl = 1, 0.1, 0.01, and 0.001. 
Here the left-hand ordinate gives D* in terms of the indicated dimensionless units, 
while the right-hand ordinate gives D* in conventional units for the case Q. = 100 and 
To = 300K. To use the right hand scale under general circumstances, the values should 
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Fig. 2. Photon-noise-limited D* of either a photon or a thermal detector. The detectors are 
exposed to thermal background radiation of temperature T, and respond with quantum 
efficiency (or emissivity) q only within a narrow spectral interval of width Av = v/Q, where 
v = c/J. is the central frequency of the band. The upper -abscissa and right-hand ordinate 
assume the values Q. = 100 and To = SOOK. For hv 4 kT, the shapes of these curves depend 

on 1, illustrating the influence of phonon bunching. 
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be divided by sin ~(Qo/Q)1~Z(7’/To) . ‘I2 For hv/kT 6 q, D* is proportional to ,/q, as 
would be expected from shot noise; however for hv/kT & q, D* is independent of the 
quantum efficiency and attains the value 

D* = [$(“‘;“)‘(yy ($>‘,-“‘. (11) 

In this limit, excess noise is much larger than shot noise, and thus D* is independent of the 
frequency of photoevents. 

PHOTON-NOISE-LIMITED PERFORMANCE OF 

THERMAL DETECTORS 

The arguments presented in the preceding section have to be modified in order to treat 
thermal detectors, since these devices respond to the power, and not the photon flux, 
incident upon them. It is assumed that the detector is cooled so that thermal fluctuations in 
the power emitted by the detector are negligible. The fluctuation in photo-event rate 
given by equation (6) implies a fluctuation in absorbed power in the frequency interval 
dv given by 

(AP,)2 = h2v2(ANJ2 

= 2h2v2q(v)@,Af(l + q(v)&). (12) 

The total power fluctuation is given by integrating this expression over all frequencies. 
The value of D* is obtained by letting PN = AP in equation (3) and using equation (1) 
and (4) to obtain 

(13) 

The quantity q(v) can still be considered as a quantum efficiency, although it is more 
conventional to interpret q(v) as the absorbtivity, or equivalently as the emissivity, of the 
detector element. 

Equation (13) can be simplified for the same cases as that of the photon detector. For 
the case q(v) = q for v > vS, and q(v) = 0 otherwise, D* is given by 

(14) 

This expression has also been evaluated numerically, and the results are also shown 
in Fig. 1 for the cases q = 1 and q z 0. For hv/kT $ 1, the curves approach constant 
values, and the curve with q z 0 is only 2% higher than that with v = 1 for this case. In 
the other special case of detection of a narrow spectral band, the results are identical to 
those for the case of a photon detector, discussed earlier and shown in Fig. 2. 

Acknowledgemenrs-The author wishes to acknowledge useful discussions of these effects with P. Narum, 
D. W. Strickland, and with the technical staff of the Infrared and Analytical Instruments Systems Section, Jet 
Propulsion Laboratory, California Institute of Technology, Pasadena, California. This work was supported in 
part by NASA contract NAS7-100. 

REFERENCES 

1. LANDAU L. D. & E. M. LIFSHITZ, Statistical Physics, pp. 351-357. Pergamon Press, Oxford (1958). 
2. The quantum efficiency will be defined for both thermal and photon detectors to be the ratio of the number of 

detected photons to the number of photons incident on the detection system. Transmission losses in the 
optical components of the detection system thus decrease the quantum efficiency. 

3. VAN VLXET K. M., Appl. Opt. 6, 1145 (1967). 
4. KINGS’IDN R. H., Detection of Optical and Infrared Radiation, Section 7.1. Springer, New York (1978). 
5. KRU~E P. W., L. D. MCGLAUCHLIN & R. B. MCQUIS~AN, Elements of Infrared Technology, Section 9.4. 

Wiley, New York (1962). 
6. JACOBS S. F. % M. SARGENT, III, Infrared Phys. 10,223 (1970). 



162 R. W. BOYD 

‘I. WOLFE W. L. & G. J. ZISSIS, The Infrared Handbook, pp. 1-14 and 1 l-39 through 11-44. ONR, Washington 
(1978). 

8. HANBURY BROWN R. & R. Q. Twrss, Proc. R. Sot. A 242, 300 (1957); see, especially, equations (2.22) and 
(3.43) through (3.46). 

9. HODARA H., Proc. IEEE 53,696 (1965); see, especially, equation (5b). 
10. ROSS M., Laser Receivers. pp. 14-23, Wiley, New York (1966); see, especially, equation (2.20). 


